Pharmacogenetic analysis reveals a post-developmental role for Rac GTPases in Caenorhabditis elegans GABAergic neurotransmission.

نویسندگان

  • Cody J Locke
  • Bwarenaba B Kautu
  • Kalen P Berry
  • S Kyle Lee
  • Kim A Caldwell
  • Guy A Caldwell
چکیده

The nerve-cell cytoskeleton is essential for the regulation of intrinsic neuronal activity. For example, neuronal migration defects are associated with microtubule regulators, such as LIS1 and dynein, as well as with actin regulators, including Rac GTPases and integrins, and have been thought to underlie epileptic seizures in patients with cortical malformations. However, it is plausible that post-developmental functions of specific cytoskeletal regulators contribute to the more transient nature of aberrant neuronal activity and could be masked by developmental anomalies. Accordingly, our previous results have illuminated functional roles, distinct from developmental contributions, for Caenorhabditis elegans orthologs of LIS1 and dynein in GABAergic synaptic vesicle transport. Here, we report that C. elegans with function-altering mutations in canonical Rac GTPase-signaling-pathway members demonstrated a robust behavioral response to a GABA(A) receptor antagonist, pentylenetetrazole. Rac mutants also exhibited hypersensitivity to an acetylcholinesterase inhibitor, aldicarb, uncovering deficiencies in inhibitory neurotransmission. RNA interference targeting Rac hypomorphs revealed synergistic interactions between the dynein motor complex and some, but not all, members of Rac-signaling pathways. These genetic interactions are consistent with putative Rac-dependent regulation of actin and microtubule networks and suggest that some cytoskeletal regulators cooperate to uniquely govern neuronal synchrony through dynein-mediated GABAergic vesicle transport in C. elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacogenetic Analysis Reveals a Post-Developmental Role for Rac GTPases in C. elegans GABAergic Neurotransmission

3 ABSTRACT The nerve cell cytoskeleton is essential for regulation of intrinsic neuronal activity. For example, neuronal migration defects are associated with microtubule regulators, such as LIS1 and dynein, as well as actin regulators, including Rac GTPases and integrins, and have been thought to underlie epileptic seizures in patients with cortical malformations. However, it is plausible that...

متن کامل

Control of developmental networks by Rac/Rho small GTPases: How cytoskeletal changes during embryogenesis are orchestrated

Small GTPases in the Rho family act as major nodes with functions beyond cytoskeletal rearrangements shaping the Caenorhabditis elegans embryo during development. These small GTPases are key signal transducers that integrate diverse developmental signals to produce a coordinated response in the cell. In C. elegans, the best studied members of these highly conserved Rho family small GTPases, RHO...

متن کامل

Interactions of UNC-34 Enabled with Rac GTPases and the NIK kinase MIG-15 in Caenorhabditis elegans axon pathfinding and neuronal migration.

Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we p...

متن کامل

The C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction

The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at t...

متن کامل

Rho GTPase signaling modulates neurotransmission in Caenorhabditis elegans

Hu, Shuang, "Rho GTPase signaling modulates neurotransmission in Caenorhabditis elegans" (2013). Theses and Dissertations. Paper 100. Rho family GTPases act as molecular switches in the regulation of diverse cellular functions, including cell division, gene transcription and neurotransmission. In the model organism Caenorhabditis elegans, the Kalirin and Trio ortholog UNC-73 contains two RhoGEF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 183 4  شماره 

صفحات  -

تاریخ انتشار 2009